Substituting x = -2, y = 3 in equation (3), we get C = 5.

Substituting the value of C in equation (3), we get the equation of the required curve as

$$\frac{y^3}{3} = x^2 + 5$$
 or $y = (3x^2 + 15)^{\frac{1}{3}}$

Example 14 In a bank, principal increases continuously at the rate of 5% per year. In how many years Rs 1000 double itself?

Solution Let P be the principal at any time t. According to the given problem,

$$\frac{dp}{dt} = \left(\frac{5}{100}\right) \times \mathbf{P}$$
$$\frac{dp}{dt} = \frac{\mathbf{P}}{20} \qquad \dots (1)$$

or

separating the variables in equation (1), we get

$$\frac{dp}{P} = \frac{dt}{20} \qquad \dots (2)$$

... (3)

Integrating both sides of equation (2), we get

$$\log P = \frac{t}{20} + C_1$$
$$P = e^{\frac{t}{20}} \cdot e^{C_1}$$

or

or

Now

Substituting the values of P and t in (3), we get C = 1000. Therefore, equation (3), gives

 $P = C e^{\overline{20}}$ (where $e^{C_1} = C$)

P = 1000, when t = 0

$$P = 1000 e^{\frac{t}{20}}$$

Let *t* years be the time required to double the principal. Then

$$2000 = 1000 e^{\frac{t}{20}} \implies t = 20 \log_e 2$$

EXERCISE 9.4

For each of the differential equations in Exercises 1 to 10, find the general solution:

1.
$$\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}$$
 2. $\frac{dy}{dx} = \sqrt{4 - y^2} \ (-2 < y < 2)$

/1

396 MATHEMATICS

3.
$$\frac{dy}{dx} + y = 1 (y \neq 1)$$

4. $\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0$
5. $(e^x + e^{-x}) \, dy - (e^x - e^{-x}) \, dx = 0$
6. $\frac{dy}{dx} = (1 + x^2) (1 + y^2)$
7. $y \log y \, dx - x \, dy = 0$
8. $x^5 \frac{dy}{dx} = -y^5$
9. $\frac{dy}{dx} = \sin^{-1} x$
10. $e^x \tan y \, dx + (1 - e^x) \sec^2 y \, dy = 0$

For each of the differential equations in Exercises 11 to 14, find a particular solution satisfying the given condition:

11.
$$(x^3 + x^2 + x + 1)\frac{dy}{dx} = 2x^2 + x; y = 1$$
 when $x = 0$

12.
$$x(x^2-1)\frac{dy}{dx} = 1; y = 0$$
 when $x = 2$

13.
$$\cos\left(\frac{dy}{dx}\right) = a \ (a \in \mathbf{R}); \ y = 2 \text{ when } x = 0$$

14.
$$\frac{dy}{dx} = y \tan x$$
; $y = 1$ when $x = 0$

- 15. Find the equation of a curve passing through the point (0, 0) and whose differential equation is $y' = e^x \sin x$.
- 16. For the differential equation $xy \frac{dy}{dx} = (x+2)(y+2)$, find the solution curve passing through the point (1, -1).
- 17. Find the equation of a curve passing through the point (0, -2) given that at any point (x, y) on the curve, the product of the slope of its tangent and y coordinate of the point is equal to the x coordinate of the point.
- **18.** At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (-4, -3). Find the equation of the curve given that it passes through (-2, 1).
- **19.** The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after *t* seconds.

- 20. In a bank, principal increases continuously at the rate of r% per year. Find the value of *r* if Rs 100 double itself in 10 years (log₂2 = 0.6931).
- **21.** In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years $(e^{0.5} = 1.648)$.
- 22. In a culture, the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria is proportional to the number present?

23. The general solution of the differential equation $\frac{dy}{dx} = e^{x+y}$ is

(A) $e^{x} + e^{-y} = C$ (B) $e^{x} + e^{y} = C$ (C) $e^{-x} + e^{y} = C$ (D) $e^{-x} + e^{-y} = C$

9.5.2 Homogeneous differential equations

Consider the following functions in x and y

$$F_{1}(x, y) = y^{2} + 2xy, \qquad F_{2}(x, y) = 2x - 3y,$$

$$F_{3}(x, y) = \cos\left(\frac{y}{x}\right), \qquad F_{4}(x, y) = \sin x + \cos \frac{y}{x}$$

If we replace x and y by λx and λy respectively in the above functions, for any nonzero constant λ , we get

$$F_{1} (\lambda x, \lambda y) = \lambda^{2} (y^{2} + 2xy) = \lambda^{2} F_{1} (x, y)$$

$$F_{2} (\lambda x, \lambda y) = \lambda (2x - 3y) = \lambda F_{2} (x, y)$$

$$F_{3} (\lambda x, \lambda y) = \cos\left(\frac{\lambda y}{\lambda x}\right) = \cos\left(\frac{y}{x}\right) = \lambda^{0} F_{3} (x, y)$$

$$F_{4} (\lambda x, \lambda y) = \sin \lambda x + \cos \lambda y \neq \lambda^{n} F_{4} (x, y), \text{ for any } n \in \mathbf{N}$$

Here, we observe that the functions F_1 , F_2 , F_3 can be written in the form $F(\lambda x, \lambda y) = \lambda^n F(x, y)$ but F_4 can not be written in this form. This leads to the following

definition: A function F(x, y) is said to be *homogeneous function of degree n* if

 $F(\lambda x, \lambda y) = \lambda^n F(x, y)$ for any nonzero constant λ .

We note that in the above examples, F_1 , F_2 , F_3 are homogeneous functions of degree 2, 1, 0 respectively but F_4 is not a homogeneous function.